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a b s t r a c t 

Image captioning which automatically generates natural language descriptions for images has attracted 

lots of research attentions and there have been substantial progresses with attention based captioning 

methods. However, most attention-based image captioning methods focus on extracting visual informa- 

tion in regions of interest for sentence generation and usually ignore the relational reasoning among 

those regions of interest in an image. Moreover, these methods do not take into account previously at- 

tended regions which can be used to guide the subsequent attention selection. In this paper, we propose 

a novel method to implicitly model the relationship among regions of interest in an image with a graph 

neural network, as well as a novel context-aware attention mechanism to guide attention selection by 

fully memorizing previously attended visual content. Compared with the existing attention-based image 

captioning methods, ours can not only learn relation-aware visual representations for image captioning, 

but also consider historical context information on previous attention. We perform extensive experiments 

on two public benchmark datasets: MS COCO and Flickr30K, and the experimental results indicate that 

our proposed method is able to outperform various state-of-the-art methods in terms of the widely used 

evaluation metrics. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Image captioning [1–3] , which automatically generates natural

anguage descriptions for images, has a wide range of applications,

uch as image retrieval, aiding the visually impaired, and intelli-

ent human computer interaction. For decades, it has been a chal-

enging cross-disciplinary task involving both computer vision and

atural language processing. 

Recently, deep learning techniques such as Convolutional Neu-

al Network (CNN) [4,5] and Recurrent Neural Network (RNN)

6,7] have significantly contributed to the great progresses in im-

ge captioning [8–10] . In particular, various visual attention-based

ncoder-decoder models have been widely explored for image cap-
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ioning [11–13] with great success by emphasizing visually impor-

ant content. However, these methods often have the following two

imitations. First, while specific regions or objects of interests in

n image are attended during sentence generation, the relationship

mong those regions or objects has not yet been explored. For ex-

mple, to caption an image with human-annotated description “the

an is walking a herd of sheep on the road through a town”, a

aptioning method needs to figure out the relationship among vi-

ual objects in the image, i.e., the relationship “walking” between

man” and “a herd of sheep” and the relationship “on” between “a

erd of sheep” and “road”. Second, most current attention-based

mage captioning methods focus on objects/regions most relevant

o the word being generated at each time step, and ignore what

as been attended to at previous time steps. As a result, these

odels may attend to the same region in an image at multiple

ime steps, which could compromise the effectiveness of the cap-

ioning method. 

Based on the above observations, we leverage a graph neural

etwork (GNN [14] ) to implicitly model the visual relationship be-

ween objects or regions in an image and propose a visual context-
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aware attention mechanism to guide sentence generation with pre-

viously attended content. In particular, we first utilize a deep CNN

to extract visual representation of an input image, and consider

each region of interest as a node and build a relationship graph

where all the nodes are fully-connected in an undirected way. The

GNN [14] propagates messages along all edges in a recurrent man-

ner and outputs all representations corresponding to the nodes in

the graph, which can be viewed as implicit relation-aware visual

representations among objects in the image. Then our context-

aware attention model will attend to the learned relationship rep-

resentations at each time step. To memorize what has been at-

tended to, we use a Long Short Term Memory (LSTM) to keep

track of previously attended visual content and fuse the attention

weight produced by our visual attention model at the current time

step with the attention weight produced at the previous time steps

for a joint attention model. Finally, we employ a LSTM-based lan-

guage model to predict next word given previously generated word

and relation-aware visual representations selected by our context-

aware attention model. 

In summary, main contributions of our work are as follows: 

• We propose to implicitly model the relationship among the ob-

jects/regions in an image with a GNN, which takes into account

the visual relationship among regions of interest for better rep-

resentation of the visual content in the image. 
• We propose a novel visual context-aware attention model to

select salient visual information at each time step, which uti-

lizes a contextual LSTM to keep track of previously attended

visual information and combine the attention weight produced

by our attention model at the current time step with the atten-

tion weight produced at the previous time step. 
• We conduct extensive experiments to quantitatively evaluate

our proposed method on two public benchmark datasets: MS

COCO and Flickr30K. Experimental results demonstrate that our

proposed method performs much better than other state-of-

the-art methods. 

The remainder of this paper is organized as follows. In

Section 2 , we first review some most relevant studies: image cap-

tioning and graph neural network. In Section 3 , we introduce the

overall framework of our proposed method and detail each compo-

nent in the framework. In Section 4 , we describe the experimental

datasets, training setups, evaluation metrics, quantitative and qual-

itative analysis. In Section 5 , we draw our conclusions and future

work on this topic. 

2. Related work 

In this section, we review two types of studies most relevant to

our work: image captioning and graph neural network. 

2.1. Image captioning 

The recent work on image captioning can be grouped into three

categories: template-based methods, retrieval-based methods and

neural network-based methods. The template-based methods

[15–18] first detect key visual concepts (e.g., objects and attributes)

from images by utilizing object detection and attribute classifica-

tion methods. According to predefined language templates, these

methods split a sentence into several parts (e.g., subject, verb and

object). Finally, these methods align the detected visual concepts

with the parts in a language template via statistical methods (e.g.,

CRF [16] and HMM [17] ). Since these methods highly rely on pre-

defined language templates, they can only generate syntactically

correct sentences at the loss of the flexibility of natural language. 

The retrieval-based methods [19–22] usually measure the simi-

larity between an input image and external sentences or the sim-
larity between the input image and other visually similar images.

ased on the similarity, these methods can choose most semanti-

ally similar sentences from an external sentence pool or candidate

entences extracted from those visually similar images. As a result,

hese methods can generate human-level sentences as all the sen-

ences were manually produced by humans. However, these meth-

ds are difficult to be transferred to different datasets and cannot

enerate novel sentences for images. 

The neural network-based methods [8,23,24] utilize deep neu-

al networks to exploit conditional probability distribution given

he visual content and generated words. Inspired by the success of

ncoder-decoder models in neural machine translation [6,7] , these

ethods consider image captioning as a translation task (bridg-

ng source image to target language). For example, Vinyals et al.

8] employ a deep CNN to encode an input image into a static

ector and utilize a LSTM-based language model to decode a sen-

ence based on the encoded vector. Similarly, Mao et al. [25] first

se a deep convolutional network to encode an input image and

mploy a RNN-based language model to encode previously gener-

ted words, then propose a multimodal model to combine both vi-

ual and textual information to predict next word. Karpathy et al.

24] also propose a multimodal recurrent neural network model

o align information of two modalities as well as simultaneously

ocate the key objects in the generated sentence. Donahue et al.

23] and Jia et al. [26] both explore different ways of combin-

ng visual information with LSTM block to guide sentence gener-

tion. However, the encoded static vector in the abovementioned

ethods is not sufficient to represent the whole image due to

he missing objects. Inspired by the success of attention mech-

nism in natural language processing [27] and computer vision

28,29] , Xu et al. [11] propose a visual attention model to select

he most relevant region representation for generating each word

uring sentence generation, instead of using a global static vec-

or. As a result, this method can generate a sentence according

o different visual content at each time step. However, the vi-

ual attention model has to attend to visual content even when

enerating non-visual words (e.g., “a”, “the” and “of”). Therefore,

u et al. [13] propose a novel adaptive attention model to deter-

ine whether to attend to the image or to the visual sentinel to

xtract meaningful information for sentence generation. Different

rom these visual attention models, Zhou et al. [30] propose a text-

onditional attention model to allow the caption generator to at-

end to certain visual content given previously generated words.

ou et al. [31] and Wu et al. [32] propose a semantic attention

odel to selectively attend to semantic concept proposals and in-

orporate them into the input and output of the LSTM-based lan-

uage model via the top-down and bottom-up computation. How-

ver, most existing works try to optimize the likelihood of the next

round-truth word using back-propagation, which leads to the ex-

osure bias between training and testing. To address this prob-

em, recent works [33,34] employ policy-gradient methods to di-

ectly optimize non-differentiable metrics for the task. Some re-

earchers [35,36] also replace RNN-based language models with

NN-based language models to address the inefficiency of LSTM

cross time during sentence generation. Furthermore, in order to

btain better image representations for image captioning, previ-

us works [9,10] first generate several object proposals and extract

orresponding features of these object proposals for further pro-

essing. Recent works [37,38] also leverage visual relationships to

enerate region/image captioning, which detect visual relationship

lasses based on visual objects explicitly detected by the Faster R-

NN object proposal network pre-trained on the Visual Genome

39] dataset, while our work learns implicit visual relationships on

mage regions of interest on the COCO/Flickr dataset, which does

ot need pre-defined relationship classes and explicit object de-

ections. 
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Fig. 1. The overall framework of our proposed image captioning method which consists of four components: CNN-based deep feature extraction, graph-based visual rela- 

tionship modelling, visual context-aware attention model and LSTM-based language model. 
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.2. Graph Neural Network 

To apply neural networks to graph data, a GNN employs feed-

orward neural networks to all nodes of the graph in a recurrent

ay. At each time step, the GNN takes previous hidden state of

ach node and the messages from its adjacent nodes as input to

ynamically update the current hidden state of each node. In [14] ,

he GNN employs multi-layer perceptrons (MLP) to update the hid-

en state of each node. However, to ensure the gradient-descent

trategy based learning algorithm converge, their contraction map

ssumption has trouble to propagate information across a long

ange in a graph. To address the problem, Li et al. [40] propose

ated Graph Neural Network (GGNN) for some graph data based

earning tasks where gated recurrent units are employed to update

he hidden state of a node in the graph by using the backprop-

gation through time strategy to compute gradients. Other works

41,42] apply convolutional neural networks to the graph domain

y encoding both local graph structure and features of nodes for

he classification of graph data. Wang et al. [43] perform similar-

ty relationship and spatial-temporal relationship reasoning with

raph convolutional networks for human action recognition. Petarn

t al. [44] leverage masked self-attentional layers in the graph at-

ention network to address the shortcoming of these graph convo-

ution based methods. Our work utilizes a GNN model to explore

he implicit visual relationship among the objects/regions of inter-

st in an image. 

. Our proposed method 

The overall framework of our image captioning system is illus-

rated in Fig. 1 . It consists of a deep CNN to extract image features,

 GNN model to learn the implicit visual relationship among the

isual objects or regions in an image, a visual context-aware atten-

ion model to select important relationship representations, and a

STM-based language model to generate sentences. 

Given an image I, we employ the widely-used CNN archi-

ecture ResNet101 [45] pretrained on the ImageNet classification

ask to extract nonlinear activations from the last convolutional

ayer as image representations, which can be denoted as V =
 

v 1 , v 2 , · · · , v n | v i ∈ R 

m } . Based on the image representations cor-

esponding to different spatial locations, we utilize a GNN model

 gnn to explore implicit relationship between the visual objects in

he image. The GNN model takes each spatial representation to

nitialize each node in the graph and recurrently updates each

ode information by utilizing the hidden presentations from other

odes to obtain the implicit relation-aware visual representations

 = { r 1 , r 2 , · · · , r n | r i ∈ R 

m } . The generated implicit relation-aware

isual representations R are forwarded into a context-aware atten-

ion model f att . Different from the existing visual attention models,

ur context-aware attention model employs a LSTM to record pre-

iously attended visual information at each time step, which helps

uide the future selection on the unexplored visual information

n an inhibition-of-return way. After that, a LSTM-based language

odel f lstm 

takes previous hidden state h t−1 , previously generated

ord embedding x t and the outputs v̄ t of the context-aware at-

ention model as input, and outputs the current hidden state h t to

redict the next word. The main working flow of our image cap-

ioning method is shown in the following equations: 

 = CN N ( I ) , (1) 

 = f gnn ( V ) , (2) 

¯
 t = f att ( R, h t−1 , p t−1 ) , (3) 

 t = f lstm 

( h t−1 , x t , ̄v t ) , (4) 

 t = arg max 
s 

sof tmax ( W o h t + b o ) , (5) 

here t denotes the time step, s t denotes the predicted word ac-

ording to the maximum softmax probability, W o and b o are the

eight and bias to be learned respectively. The hidden state h 0 is

nitialized with zero. Eqs. (3) –(5) are recursively applied, f gnn , f att 

nd f lstm 

will be discussed in the following sections. 

.1. Graph-based visual relationship modelling 

The GNN models data structure and representation in a graph,

hich has made remarkable success on various graph data based
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learning tasks. Inspired by GGNN [40] which learns the represen-

tation of a graph to predict node or graph-level output, we extend

it to explore the implicit relationship among the visual objects in

images. In the GNN model, we instantiate a graph G for each image

that consists of N nodes corresponding to spatial locations of the

image representation derived from a deep CNN. In order to fully

capture the relationships between these nodes, we employ a fully-

connected graph and learn edge strengths/weights between nodes.

The edge strengths/weights between nodes form an adjacency ma-

trix A , which denote the probabilities of the relationships exist-

ing between any two graph nodes. Without the learning of edge

weights, each edge weight A i,j except for the diagonal element in

the adjacency matrix is one. With the learning of edge weights,

each edge weight A i,j between two nodes v i , v j in the graph can be

defined as: 

A i, j = σ
(

f edge 

(∣∣v i − v j 
∣∣)) (6)

where f edge is a convolutional layer with kernel size 1, followed by

a sigmoid function. The f edge takes the absolute difference between

node features as input, which satisfies the symmetry property [46] .

To reduce the dimension of image representations and initialize

the hidden state of each node in the graph, we apply non-linear

transformation to the image representations V and use the trans-

formed vector to initialize the hidden state of each node: 

 v t a = ϕ ( W a v a + b a ) , (7)

h 

0 
a = β

(̃
 v t a 
)
, (8)

where W a and b a are the weight and bias to be learned respec-

tively, v a ∈ V is the feature vector corresponding to each spatial

location in the image, h 0 a denotes the initial hidden state of each

node a in the graph, ϕ and β are the non-linear activation func-

tions (e.g., hyperbolic tangent function Tanh and rectified linear

unit Relu). 

At each time step t , the incoming messages of each node a are

collected from the hidden states of its adjacent nodes { d | ∀ a ∈ G , ( d,

a ) ∈ B}: 

x t a = 

∑ 

( d,a ) ∈ B 
W g h 

t−1 
d 

+ b g , (9)

where W g and b g are the shared weight and bias to be learned

across all nodes respectively, and B denotes the collection of adja-

cent nodes, which can be obtained from the adjacency matrix A . 

After aggregating the incoming messages for each node, the

GNN employs Gated Recurrent Unit (GRU) which contains a reset

gate r and a update gate z to update the hidden state of each node

as follows: 

z t a = σ
(
W z x 

t 
a + U z h 

t−1 
a + b z 

)
, (10)

r t a = σ
(
W r x 

t 
a + U r h 

t−1 
a + b r 

)
, (11)

 h 

t 
a = φ

(
W h x 

t 
a + U h 

(
r t a � h 

t−1 
a 

)
+ b h 

)
, (12)

h 

t 
a = 

(
1 − z t a 

)
� h 

t−1 
a + z t a �

˜ h 

t 
a , (13)

where the default operation between matrices is matrix multipli-

cation, � denotes an element-wise multiplication, W and U denote

the shared weights to be learned, b denotes the bias term, σ de-

notes the element-wise logistic sigmoid function, and φ denotes

hyperbolic tangent function tanh. The reset gate r and the update

gate z selectively control the influence of information from previ-

ous hidden state and current hidden state. Note that the hidden

states of all nodes in the graph are updated synchronously. We re-

currently update the hidden state of each node for T time steps

and extract node-level outputs of the GNN as the implicit relation-

aware visual representations R for the following visual context-

aware attention model. 
.2. Visual context-aware attention model 

Given the previous hidden state h t−1 of the LSTM-based lan-

uage model, the previously attended visual information p t−1 and

he implicit relationship representations R from the GNN, the ini-

ial normalized attention weights a t for the visual signal R can be

btained through a single layer neural network followed by a soft-

ax function: 

 t = w 

T 
att tanh ( U att R + W att h t−1 + M att p t−1 + b att ) , (14)

 t = sof tmax ( z t ) , (15)

here U att , W att and M att are the shared weights to be learned,

 att denotes the bias term. In this step, the implicit relation-aware

isual representations R are forwarded into the attention model.

s a result, the attention model can attend to the implicit visual

elationship at each time step. Furthermore, we design an interpo-

ation gate k t to fuse the current normalized weight a t with previ-

usly produced weight ā t−1 . 

 t = σ ( W k h t−1 + b k ) , (16)

¯
 t = k t a t + ( 1 − k t ) ̄a t−1 , (17)

here W k and b k are the shared weight and bias term to be

earned respectively, σ denotes the element-wise logistic sigmoid

unction. If the gate k t is zero, the current normalized weight is en-

irely ignored, and the previously produced weight is used. On the

ontrary, if the gate k t is one, the previously produced weight is ig-

ored, and the current normalized weight is applied to select suit-

ble visual information. The attended visual signal v̄ t is denoted as

 linear combination of all relation-aware visual representations: 

¯
 t = 

n ∑ 

i =1 

ā r i,t ( R ) i , (18)

After obtaining the attended visual information, we forward it

nto a LSTM model which memorizes the visual information se-

ected by our attention model. As a result, the context information

rom the LSTM model can be utilized to guide the attention weight

election at next time step: 

p t = q lstm 

( p t−1 , ̄v t ) . (19)

.3. LSTM-based language model 

To model sentence generation, we employ a variant of LSTM

47] which has achieved great success in image captioning. Differ-

nt from previous image captioning models, we design an adap-

ive gate g t to control whether visual signal can be fed into the

teration of LSTM. The proposed visual gated LSTM extends the ba-

ic LSTM which contains a memory cell m t and three input gates

i.e., input gate i t , forget gate f t and output gate o t ) with additional

isual gate unit. The inputs to the visual gated LSTM include the

ord embedding x t , the previous hidden state h t−1 and the at-

ended visual signal v t . The iteration of LSTM at each time step

 can be formulated as follows: 

 t = σ ( W g x t + U g h t−1 + b g ) , (20)

 t = σ ( W i x t + U i h t−1 + g t � M i v t + b i ) , (21)

f t = σ
(
W f x t + U f h t−1 + g t � M f v t + b f 

)
, (22)

 t = σ ( W o x t + U o h t−1 + g t � M o v t + b o ) , (23)

˜ 

 t = φ( W c x t + U c h t−1 + g t � M c v t + b c ) , (24)

 t = i t � ˜ m t + f t � m t−1 , (25)

 t = o t � φ( m t ) , (26)
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here the default operation between matrices is matrix multipli-

ation, � denotes an element-wise multiplication, W, U , and M de-

ote the shared weight matrices to be learned, and b denotes the

ias term. ˜ m t is the input to the memory cell m t , which is gated

y the input gate i t . σ denotes the element-wise logistic sigmoid

unction, and φ denotes hyperbolic tangent function tanh. 

.4. Model learning 

Based on the hidden state of LSTM-based language model at

ach timestep, we employ a non-linear softmax layer to predict the

ext word’s probability distribution over the whole vocabulary: 

t = sof tmax 
(
U ρh t + b ρ

)
, (27) 

here U ρ and b ρ denote the parameters to be learned. 

During training, the optimal sentence corresponding to the in-

ut image can be generated by maximizing the probability of sen-

ences via chain rule. Assuming that there are N image-description

raining pairs ( x i , y i ) in the training dataset, where each sentence

 

i has a variable length t i . We define the overall loss function as

he averaged log-likelihood over the whole training dataset plus a

egularization term: 

 ( θ ) = 

1 

N 

N ∑ 

i =1 

t i ∑ 

j=1 

log ρ
(
y i j | y i 1: j−1 , x 

i , θ
)

+ λ‖ 

θ‖ 

2 
2 , (28) 

here y i 
j 

is a one-hot encoding vector corresponding to the in-

ut word, θ is model parameters to be learned, and λ denotes

he regularization coefficient. We can use stochastic gradient de-

cent to optimize the above loss function. During testing, we can

ecursively sample y t based on the probability distribution ρt until

eeting the end symbol of the vocabulary. 

. Experimental results and discussions 

.1. Datasets 

We compare our proposed model with the state-of-the-art

ethods on two public benchmark datasets, Microsoft COCO

48] and Flickr30k [49] . 

Microsoft COCO consists of 82,783, 40,504 and 40,775 images

or training, validation and testing respectively. It is currently the

argest image captioning dataset. Each image is labelled with at

east five captions in the dataset. Compared with Ficker30k, this

ataset is more challenging since the images contain multiple ob-

ects in their natural context. As there are no available ground

ruth captions for the test set, we follow the widely used data split

24] for this dataset: 50 0 0 images for validation, 50 0 0 images for

esting and other images for training. 

Flickr30k consists of 158,915 crowd-sourced captions and

1,783 images collected from Flickr. This dataset extends the pre-

ious Flickr8k dataset and mainly describes everyday activities and

vents on humans. Each image has five reference captions in the

ataset. To make fair comparison with existing studies, we employ

he publicly available split [24] : 29,783 images are used for train-

ng, 10 0 0 images for validation, and 10 0 0 images for testing. 

.2. Experimental settings 

Data preprocessing . In the experiments, we apply the standard

reprocessing practice to the images and captions. 

For captions, we convert each sentence to lower case and dis-

ard all the non-alphabetic characters. We drop those words that

ccur less than five times in MS COCO or three times in Flick30k ,

esulting in a vocabulary with size 10,478 and 7652 in MS COCO

nd Flickr30k respectively. If a word is not in the vocabulary, we
et it as an unknown token < UNK > . For modelling convenience,

e add a start token < Start > and an end token < End > to the

ocabulary. During testing, we set the maximum allowed sentence

ength as 30. 

For images, we encode them using the spatial feature outputs

f the last convolutional layer of ResNet-101 [45] . After forward-

ng the images to the ResNet-101, we employ spatially adaptive

verage pooling used in [33] to make the output size of all im-

ges same. Therefore, the final output size of the last convolutional

ayer of ResNet-101 is 10 × 10 × 2048, resulting in the 100 spatial

ocation indexes over the input image. 

Training and testing details . In the experiments, we set the

idden size of LSTM, the image feature size and word embedding

ize all to 512. To decrease the number of model parameters, we

et the hidden size of each attention layer to 256. We employ

dam optimizer with the initial learning rate 5e-4. We set batch

ize as 64 and maximum epoch number as 80. To avoid overfitting,

e employ dropout with rate 0.5 and early stopping if the valida-

ion CIDEr [50] score does not increase over the last 10 epochs.

uring training, we first fix the deep CNN part for training up

o 30 epoches and then finetune the deep CNN part by anneal-

ng the learning rate by a factor of 0.8 every three epochs. During

esting, we forward the start token or previously generated token

o the trained model to sample next word until the end token is

eached. Similar to existing image captioning models, we use beam

earch strategy with size 5. Even though we find that beam search

ith length normalization can improve performance, we do not

se length normalization in all experiments to keep comparisons

air. 

.3. Evaluation metrics 

To quantitatively evaluate the performance of our proposed

ethod, four commonly used metrics, namely BLEU [51] , Meteor

52] , Rouge-L [53] and CIDEr [50] ), are used to evaluate the qual-

ty of generated sentences. All these metrics measure the consis-

ency of n-grams between generated sentences and reference sen-

ences. To make fair comparisons with the existing image caption-

ng methods, we utilize the publicly available implementation eval-

ation code released by MS COCO Evaluation Server [48] to test the

erformance. 

.4. Compared methods 

To demonstrate the effectiveness of our proposed method, we

ompared the following state-of-the-art methods: 

(1) NIC [8] : NIC injects image features derived from the fully-

connected layer of a deep CNN into the first time step of

the LSTM-based language model. We directly cite the results

reported in [54] . 

(2) LRCN [23] : LRCN considers two stacked LSTM as a language

model which takes previously generated word and global

image feature derived from the fully-connected layer of a

deep CNN as input at each timestep. 

(3) DeepVS [24] : DeepVS first learns a structured objective that

aligns two modalities (image regions and sentences) through

a multimodal embedding, then utilizes a multimodal recur-

rent neural network to generate sentences corresponding to

image regions based on the learned modal alignments. 

(4) Soft-Att [11] and Hard-Att [11] : Soft-Att and Hard-Att select

some regional representations derived from the last convolu-

tional layer of a deep CNN and use the LSTM-based language

model to decode each word at each timestep conditioned on

the selected representations. 

(5) ATT-FCN [31] : ATT-FCN first detects key attributes in an im-

age, then takes the global image feature and the detected
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attributes as input and fuses them into the hidden state of

the LSTM-based language model at each timestep. 

(6) G-L STM [26] : G-L STM incorporates extra semantic informa-

tion obtained from retrieval-based guidance, semantic em-

bedding guidance and image-based guidance into the LSTM-

based language model to generate captions. 

(7) ERD [12] : ERD conducts a fixed number of review steps in-

cluding attentive input reviewer and attentive output re-

viewer on the encoder to generate multiple thought vectors.

(8) Sentence-Condition (SC) [30] : SC leverages previously gener-

ated text to guide the model to focus on certain image fea-

tures and injects the attended features into the LSTM-based

language model at each timestep. 

(9) MSM [54] : MSM integrates the inter-attribute correlations

into multiple instance learning method and explores differ-

ent ways of injecting the detected attributes and image rep-

resentations into the LSTM-based language model. 

(10) Adap [13] : Adap is a novel adaptive attention model which

determines whether to attend to the image feature or not as

the prediction of some words does not need visual signal. 

(11) Att 2 in ∗ [33] : Att 2 in ∗ employs an improved attention model

for sentence generation and leverages a self-critical sequence

training algorithm to optimize non-differentiable NLP met-

rics to boost the model performances. To keep a fair com-

parison, we only cite the results under the same optimiza-

tion objective. 

(12) SCA [55] : SCA extends previous Soft-Att [11] with channel-

wise attention in multi-layer feature maps, which can dy-

namically modulate visual context across spatial, channel-

wise and multi-layer dimensions. 

(13) UD-Base ∗ [56] : UD-Base ∗ first detects key image regions via

a Faster R-CNN model, then use a top-down attention model

to select the regions. To keep a fair comparison, we only cite

the results of the proposed model under the same image

features and training objective. 

(14) Convcap [35] : Convcap employs a CNN-based decoder as a

language model to generate sentences. The CNN-based de-

coder is mainly implemented by multi-layer masked convo-

lutions. 

(15) AED-AR [57] : AED-AR attempts to regularize the transition

dynamics of the LSTM-based language model with an auto-

reconstructor network. 

(16) WICG [58] : WICG explores different ways of incorporating

image features into the language model and demonstrates

that merging image features in a subsequent stage is effec-

tive. 

(17) HCVSA [59] : HCVSA utilizes a bidirectional Grid LSTM to

learn complex spatial patterns in the image context and em-

ploys a two-layer bidirectional LSTM to generate the global

sentence. 

(18) Our_A_R_L is proposed in this paper, and other variant mod-

els are also explored. Our Baseline employs the attention

model as [11] and the LSTM-based language model de-

scribed in Section 3.3 , Our_A incorporates context-aware at-

tention model to the baseline, Our_R incorporates graph-

based visual relationship without the learning of edge

weights to the baseline, Our_R_L incorporates graph-based

visual relationship with the learning of edge weights to the

baseline, and Our_A_R employs both attention context-aware

attention model and graph-based relationship information. 

4.5. Quantitative analysis 

Table 1 shows the performance of compared methods and

ours on the test split of MS COCO. Overall, the results across

seven evaluation metrics consistently indicate that our proposed
ur_A_R and Our_A_R_L achieve better performances than other

ighteen state-of-the-art methods. In particular, Our_A_R_L can

chieve 35.8 and 111.3 in the BLEU@4 and CIDEr respectively, mak-

ng the relative improvement over the recently state-of-the-art

ttention-based methods (Att2in [33] and Adap [13] ) by 14.4% /

.9% and 7.8% / 2.6% respectively. Note that our Baseline which

mploys the same attention mechanism as [11] and the LSTM-

ased language model described in Section 3.3 also achieves bet-

er or comparable performance than some state-of-the-art meth-

ds (e.g., SC [30] and MSM [54] ) due to the powerful ability of

ariant LSTM. By additionally incorporating context-aware atten-

ion mechanism and graph-based visual relationship to Baseline

espectively, both Our_A and Our_R can achieve further perfor-

ance improvement in terms of all evaluation metrics compared

ith the implemented Baseline. The improvement of Our_A and

ur_R over Baseline by 3.1% and 4.2% respectively in the CIDEr

etric indicates that our proposed attention model and graph-

ased relationship model are helpful for image captioning. When

tilizing both attention context-aware visual attention mechanism

nd graph-based relationship information, our proposed Our_A_R

an significantly improve captioning performance from 32.3/101.6

o 35.2/109.4 in terms of BLEU@4 and CIDEr, respectively. Af-

er using learning-based edges for visual relationship modelling,

ur model can further achieve better results in most evaluation

etrics. These results indicate that exploiting context-aware vi-

ual attention mechanism and building graph-based relationship

odel are complementary for improving image captioning perfor-

ance. 

The performance comparison in terms of seven evaluation met-

ics on the test split of the Flickr30k dataset is summarized in

able 2 . The evaluation scores on Flickr30k are much lower than

hose on MS COCO, due to the small number of training sam-

les including visual and textual clues in the dataset. Similarly, our

roposed Our_A_R and Our_A_R_L consistently outperform other

tate-of-the-art methods in terms of all evaluation metrics. In par-

icular, our proposed Our_A_R_L achieves 27.7 and 57.4 in the

LEU@4 and CIDEr, respectively, making the relative improvement

ver the best competitor Adap [13] by 10.4% and 8.1% respectively.

imilar to the observations on MS COCO, our proposed Our_A

nd Our_R perform much better than Baseline by further taking

ontext-aware visual attention mechanism and graph-based rela-

ionship model into account for image captioning respectively. In

ddition, further improvement is achieved with Our_A_R where

oth context-aware visual attention model and graph-based rela-

ionship model are utilized. When using learning-based edges for

ur models (Our_R_L and Our_A_R_L), the performances can be

urther boosted in terms of most evaluation metrics. 

.6. Qualitative analysis 

To better visualize and understand the visual relationships, we

lot the relationship probability matrices (also called relationship

djacency matrix) of two test images in the Fig. 2 (a). The learned

dge strengths/weights denote the probabilities of the relation-

hips existing between any two graph nodes, and the sparse proba-

ility matrix means the sparse relationships between the objects in

he images. To better illustrate the learned relationships, we then

lot the attention weight distribution over 100 graph nodes when

enerating three subject-relation-object words in Fig. 2 (b), e.g.,

ebra-standing-snow and man-riding-wave, and show the strong

elationships corresponding to the mostly attended three graph

odes in Fig. 2 (c). Overall, it can be seen that our model can cap-

ure rich visual relationships consistent with human perception

n the test images. From the three subject-relation-object words

n Fig. 2 (b,c), e.g., zebra-standing-snow and man-riding-wave, we

an see that the nodes and their relationships corresponding to
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Table 1 

The performance comparison with eighteen state-of-the-art methods on the MS COCO dataset. 

The results of ablated models (Baseline, Our_A, Our_R, Our_R_L and Our_A_R) and our full model 

(Our_A_R_L) are shown at the bottom of the table. 

Method BLEU@1 BLEU@2 BLEU@3 BLEU@4 METEOR ROUGE-L CIDEr 

NIC [8] 66.6 45.1 30.4 20.3 - - - 

LRCN [23] 69.7 51.9 38.0 27.8 22.9 50.8 83.7 

DeepVS [24] 62.5 45.0 32.1 23.0 19.5 - 66.0 

Soft-Att [11] 71.8 50.4 35.7 25.0 23.0 - - 

Hard-Att [11] 70.7 49.2 34.4 24.3 23.9 - - 

ATT-FCN [31] 70.9 53.7 40.2 30.4 24.3 - - 

ERD [12] - - - 29.8 24.0 - 89.5 

SC [30] 72.0 54.6 40.4 29.8 24.5 - 95.9 

MSM [54] 73.4 56.7 43.0 32.6 25.4 54.0 100.2 

G-LSTM [26] 67.0 49.1 35.8 26.4 22.7 - - 

Adap [13] 74.2 58.0 43.9 33.2 26.6 - 108.5 

Att 2 in ∗ [33] - - - 31.3 26.0 54.3 101.3 

SCA [55] 71.9 54.8 41.1 31.1 25.0 53.1 95.2 

UD-Base ∗ [56] 74.5 - - 33.4 26.1 54.4 105.4 

Convcap [35] 71.1 53.8 39.4 28.7 24.4 52.2 91.2 

AED-AR [57] 74.0 57.6 44.0 33.5 26.1 54.6 103.4 

WICG [58] 67.9 50.2 36.7 27.1 22.6 49.9 81.8 

HCVSA [59] 76.2 60.1 45.1 35.0 27.0 - - 

Baseline 72.8 56.1 42.5 32.3 25.1 53.2 101.6 

Our_A 74.0 57.8 44.5 34.3 26.6 55.1 104.7 

Our_R 73.9 58.7 44.4 34.0 26.7 54.7 105.8 

Our_R_L 74.5 59.2 45.1 34.6 26.9 55.2 106.9 

Our_A_R 75.1 60.0 46.0 35.2 27.5 56.5 109.4 

Our_A_R_L 75.9 60.3 46.5 35.8 27.8 56.4 111.3 

Table 2 

The performance comparison with seven state-of-the-art methods on the Flickr30k dataset. Similarly, 

the results of ablated models (Baseline, Our_A, Our_R, Our_R_L and Our_A_R) and our full model 

(Our_A_R_L) are shown at the bottom of the table. 

Method BLEU@1 BLEU@2 BLEU@3 BLEU@4 METEOR ROUGE-L CIDEr 

DeepVS [24] 57.3 36.9 24.0 15.7 15.3 - 24.7 

Soft-Att [11] 66.7 43.4 28.8 19.1 18.5 - - 

Hard-Att [11] 66.9 43.9 29.6 19.9 18.5 - - 

ATT-FCN [31] 64.7 46.0 32.4 23.0 18.9 - - 

G-LSTM [26] 64.6 44.6 30.5 20.6 17.9 - - 

SCA [55] 66.2 46.8 32.5 22.3 19.5 - - 

Adap [13] 67.7 49.4 35.4 25.1 20.4 - 53.1 

Baseline 66.8 48.7 34.9 24.5 19.3 45.2 51.3 

Our_A 67.3 49.3 35.6 25.8 20.2 46.5 53.7 

Our_R 68.0 50.7 36.2 26.5 20.7 47.0 55.3 

Our_R_L 68.7 51.1 36.7 26.6 21.1 47.0 55.9 

Our_A_R 69.2 51.3 37.5 27.3 21.3 48.2 56.3 

Our_A_R_L 69.8 51.7 37.8 27.7 21.5 48.5 57.4 
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he subject word and object word mainly focus on the salient vi-

ual objects and backgrounds, respectively, while the nodes and

heir relationships corresponding to the relation word focus on

oth visual objects and backgrounds. That is to say, the relation-

hips for the relation word indeed build the bridge between sub-

ect and object. For example, the relationships of green nodes se-

ected to generate word standing focus on both the zebra and

now regions, and connect the subject word zebra and object word

now. To show the visualization differences between our model

with relationship learning, denoted as rel) and previous attention

odel (without relationship learning, denoted as att) in attention

eight distribution, we also plot their distribution curves (with

enerated sentences) in Fig. 3 . From the generated sentences, we

an see that our model can produce more accurate semantic ob-

ects than the attention model (e.g., zebra-standing-snow vs zebra-

tanding). From the attention weight distribution, we can see that

oth our model and the attention model attend to some similar

alient regions (e.g., the head region of zebra) when generating

ubject words (zebra and person). However, our model also attends

o more different salient regions (e.g., the head region of zebra and

e  
he snow region) than the attention model when generated rela-

ion words (standing and riding). These results further indicate our

odel can boost previous attention model by attending to different

ontext objects especially in generating relation words. 

.7. Performance on MSCOCO online testing server 

To make a full comparison with other state-of-the-art methods,

e have submitted Our_A_R (with visual representations) to the

fficial MSCOCO evaluation server and obtain the model perfor-

ance on the official testing set. Table 3 reports the performance

eaderboard of published state-of-the-art methods and ours on the

nline MSCOCO test server. A test image on the leaderboard test-

ng sets consists of five human-annotated captions (c5) or forty

uman-annotated captions (c40). In the experiment, Our_A_R does

ot use more complicated deep CNN models (i.e., ResNet-152 [45] )

han the compared methods (e.g., MSM [54] ). In addition, Our_A_R

lso does not use any reinforcement learning based objective func-

ion [33] which can apparently improve the performance of all

valuation metrics, and does not utilize model ensemble technique
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Fig. 2. Illustration of relationship adjacency matrix, attention weight distribution over 100 graph nodes when generating three subject-relation-object words and strong 

relationships corresponding to the mostly attended three graph nodes for two test images. The learned edge strengths/weights denote the probabilities of the relationships 

existing between any two graph nodes. The sentences generated by our proposed Our_A_R_L and human-annotated ground-truth sentences are also attached. 

Fig. 3. Visualization differences between our model (with relationship learning, denoted as rel) and attention model (without relationship learning, denoted as att) in 

attention weight distribution when generating key words. 
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Table 3 

The performance comparison with previous state-of-the-art image captioning methods on the online MSCOCO testing server. Here 

we directly cite most results from Lu et al. [13] to make a fair comparison. 

Method 

B-2 B-3 B-4 METEOR ROUGE-L CIDEr 

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 

NIC [8] 0.542 0.802 0.407 0.694 0.309 0.587 0.254 0.346 0.530 0.682 0.943 0.946 

MSCap [60] 0.543 0.819 0.407 0.710 0.308 0.601 0.248 0.339 0.526 0.680 0.931 0.937 

mRNN [25] 0.545 0.798 0.404 0.687 0.299 0.575 0.242 0.325 0.521 0.666 0.917 0.935 

LRCN [23] 0.548 0.804 0.409 0.695 0.306 0.585 0.247 0.335 0.528 0.678 0.921 0.934 

HardA [11] 0.528 0.779 0.383 0.658 0.277 0.537 0.241 0.322 0.516 0.654 0.865 0.893 

ATTF [31] 0.565 0.815 0.424 0.709 0.316 0.599 0.250 0.335 0.535 0.682 0.943 0.958 

ERD [12] 0.550 0.812 0.414 0.705 0.313 0.597 0.256 0.347 0.533 0.686 0.965 0.969 

MSM [54] 0.575 0.842 0.436 0.740 0.330 0.632 0.256 0.350 0.542 0.700 0.984 1.003 

Adap [13] 0.584 0.845 0.444 0.744 0.336 0.637 0.264 0.359 0.550 0.705 1.042 1.059 

Ours 0.589 0.856 0.450 0.756 0.343 0.647 0.270 0.364 0.555 0.710 1.061 1.064 

Table 4 

The performance comparisons of our pro- 

posed Our_R with other variant meth- 

ods on the MS COCO dataset in terms of 

BLEU@4 and CIDEr metrics. 

Method BLEU@4 CIDEr 

Our_V(w/o R) 32.3% 101.6% 

Our_R(w/o V) 34.0% 105.8% 

Our_R(w/ V) 34.1% 105.7% 

Our_R(GNN) 34.0% 105.8% 

Our_R(GNN-4) 32.8% 103.0% 

Our_R(GNN-8) 33.3% 104.6% 

Our_R(FFCL) 32.6% 102.7% 
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Table 5 

The performance comparisons of our proposed Our_R under dif- 

ferent parameter settings on the MS COCO dataset in terms of 

BLEU@4 and CIDEr metrics. Note that the number ∗ in “T- ∗” and 

“F- ∗” denotes the number of the iteration step T for the GNN 

or the size of feature map for the attention model respectively. 

The first four rows show the results of the iteration step T with 

different parameter values (3, 4, 5 and 6), and the last three 

rows show the results of the size of feature map with different 

parameter values (6, 8 and 10). 

Method BLEU@4 CIDEr 

Our_R(T-3) 33.5% 104.7% 

Our_R(T-4) 34.1% 105.9% 

Our_R(T-5) 34.2% 105.7% 

Our_R(T-6) 34.2% 105.9% 

Our_R(F-6) 32.7% 103.3% 

Our_R(F-8) 33.4% 104.6% 

Our_R(F-10) 34.1% 105.9% 
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e.g., Adap [13] ) to boost the performance. Compared with the 9

ethods on the leaderboard, Our_A_R still outperforms them in

erms of all evaluation metrics on both c5 and c40 testing sets. 

.8. Model analysis 

Relationship representations . To investigate whether relation-

hip representations can replace visual representations or not, we

resent the experimental results in the first three rows of Table 4 .

rom these results, we can see that Our_R(w/o V) which em-

loys only relationship representations achieves comparable results

ith Our_R(w/ V) which employs both relationship representa-

ions and visual representations in the evaluation metrics. Com-

ared with Our_V(w/o R) which employs only visual representa-

ions, Our_R(w/o V) clearly outperform it by a large margin in the

valuation metrics. The comparison results indicate the learned re-

ationship representations R can replace visual representations V

or image captioning. 

Other graph structures . To figure out how the other graph

tructures affect model performance, we present the experimen-

al results of different graph structures in the last four rows of

able 4 . Our_R(GNN) is implemented using graph neural network

ith fully-connected edges, Our_R(GNN-4) and Our_R(GNN-8) are

mplemented using graph neural network with 4-neighborhood

nd 8-neighborhood connections respectively, and Our_R(FFCL) is

mplemented using flatten and fully connected layers which is

enerally considered very close to Our_R(GNN). It can be seen

hat Our_R(GNN) achieves much better results than Our_R(GNN-4,

ur_R(GNN-8) and Our_R(FFCL) in the evaluation metrics, which

urther proves the effectiveness of our graph model. 

.9. Analysis of parameters 

To investigate the effect of two important parameters (itera-

ion step T for the GNN and size of feature map for the attention

odel) for image captioning on the MS COCO dataset, we design

everal comparison experiments. Table 5 shows the results of our
roposed Our_R model under different parameter settings. The first

our rows of Table 5 lists the results of the iteration step T in the

ange of 3, 4, 5 and 6, and the last three rows of Table 5 shows the

esults of the size of feature map in the range of 6, 8 and 10. From

hese results, we can observe that increasing the iteration step T

nd the size of feature map can lead to performance improve-

ents. In particular, the performance of our proposed Our_R does

ot increase too much when iteration step T is increased to a level.

owever, the number of parameters increases exponentially when

he iteration step T and the size of feature map are increased. To

ake a tradeoff between performance and model complexity, we

mpirically set the iteration step T and the size of feature map to

 and 10 in our experiments, respectively. 

. Conclusions 

In this paper, we have presented an image captioning method

hich consists of two novel components: graph based visual re-

ationship modelling and context-aware attention mechanism. The

isual relationship modelling is implemented via a graph neu-

al network which recurrently passes the messages from adjacent

odes across time. The context-aware attention mechanism is im-

lemented by a LSTM to memorize its previously attended visual

nformation. Compared with the state-of-the-art methods, our pro-

osed method can attend to both specific visual objects in an im-

ge and the implicit visual relationship among the visual objects of

n image and take into account what has been previously attended

o. We have evaluated the effectiveness of our proposed method

n two public benchmark datasets: MS COCO and Flickr30K. In the

xperiments, our proposed method consistently outperforms the

tate-of-the-art methods in terms of all evaluation metrics on both

atasets. We further visualize the spatial attention maps and gen-
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erated sentences to better understand our method, which indicates

that our proposed method learns information consistent with hu-

man perception. In the future, we will aim to integrate explicit

visual relationship into our method. Furthermore, our proposed

method can also be applied to other vision-to-language tasks such

as visual question answering and visual dialogue. 
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